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In Ref. [1] expressions for the continuous Euclidean time limits of various lattice fermion determinants were
derived and compared in order to test universality expectations in Lattice QCD. Here we review that work
with emphasis on its relevance for assessing the fractional power prescription for the determinant in dynamical
staggered fermion simulations. Some new supplementary material is presented; in particular the status of the
“universality anomaly” in the determinant relations is clarified: it is shown to be gauge field-independent and
therefore physically inconsequential.

1. Introduction and background

During the last decade there have been major
developments in lattice gauge theory. At the con-
ceptual level, the long-standing problem of how
to formulate chiral symmetry on the lattice has
been solved. The explicit solution is provided by
the Overlap fermion formulation [2], which led
to the Overlap Dirac operator for LQCD [3] –
this has an exact chiral symmetry encapsulated
in the Ginsparg–Wilson relation [4] γ5D+Dγ5 =
aDγ5D, and is free [5] of the problems caused by
lack of chiral symmetry in previous formulations.
Implementing Overlap fermions in numerical sim-
ulations is a very difficult challenge though, and
it seems that substantial advances in algorithms
and computer power will be needed before realis-
tic simulations with dynamical Overlap fermions
are possible.

In the meantime work continues on traditional
fermion formulations. A major practical develop-
ment has been algorithm advances for improved
staggered fermions which have made possible dy-
namical fermion simulations on realistically large
lattices. An impressive increase in agreement
with experimental values for various hadronic pa-
rameters has been obtained compared to previ-
ous quenched simulations [6] (see, e.g., [7,8] for
reviews and [9] for latest results). However, as
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discussed previously by various authors [10,8,11],
there are problematic conceptual/theoretical is-
sues for dynamical staggered fermions which raise
the question of whether this is a first-principles
approach to QCD or whether it should instead
be regarded as some kind of effective model.

The staggered formulation is a lattice theory
for 4 degenerate continuum fermion flavours, and
to represent the fermion determinant of a sin-
gle dynamical (sea) quark flavour one takes the
fourth root of the staggered fermion determinant.
This prescription is based on the expectation that
in the continuum limit the staggered fermion de-
terminant should factor into the product of 4
copies of the fermion determinant for a single
quark flavour. There are two theoretical issues
here: firstly, whether the expected factorisation
actually occurs, and secondly, assuming it does
occur, whether the prescription can be fitted into
the framework of local quantum field theory at
finite lattice spacing, i.e. whether there exists
a (exponentially-)local lattice Dirac operator D
such that det(Dstaggered)

1/4 = detD. Here we
will focus on the factorisation issue. For discus-
sion of the locality issue see [10,8,11] along with
§IX-D.7 of [9] and the references mentioned there.

It is well-known that terms in lattice actions
which formally vanish for a → 0 can have resid-
ual effects which remain in the continuum limit.
Familiar examples include non-vanishing contri-



2

butions to Feynman diagrams from “irrelevant”
interaction terms in lattice perturbation theory
(see, e.g., [12]) and the essential role of the Wilson
term in reproducing the axial anomaly in LQCD
with Wilson fermions [13]. In light of this, factori-
sation of the staggered fermion determinant in the
continuum limit cannot be taken for granted – it
could conceivably be spoiled by residual effects
from flavour-changing interactions. It is there-
fore important to investigate, to the extent that
it is possible and in as direct a way as possible,
whether the factorisation actually occurs.

Recall that the expansion of the logarithm
of the fermion determinant in powers of the
gauge field can be expressed in terms of the
one (fermion) loop gluonic n-point functions.
Therefore, the factorisation issue for the stag-
gered fermion determinant is intimately tied to
the question of whether perturbative LQCD with
staggered fermions can be renormalised in a way
that is consistent with 4 flavour QCD. The stud-
ies of perturbative LQCD with staggered fermions
carried out to date indicate that this is the case,2

and this can be taken as indirect evidence for fac-
torisation of the staggered fermion determinant
in the continuum limit (although it says nothing
about possible non-perturbative problems for the
factorisation). It should be noted however that so
far renormalisation of perturbative LQCD with
staggered fermions to all orders in the gauge cou-
pling has not been demonstrated. (Some argu-
ments were sketched in [14] but these are not a
rigorous proof.) This is in contrast to the situ-
ation for Wilson fermions where renormalisabil-
ity was demonstrated some time ago by Reisz
[16] based on his power-counting theorem [17].
As mentioned in [10], the power-counting theo-
rem, as it stands, does not apply to staggered
fermions. This reflects the additional complica-
tions due to flavour-changing interactions in stag-
gered fermion perturbation theory. In light of all
this, investigation of the factorisation issue for the
staggered fermion determinant is also of interest
as an indirect check on the possibility of renormal-

2Early indications of this came from evaluations of the
fermion loop correction to the gluonic propagator [14], and
the fermion self-energy [15]; see [12] for a summary of
subsequent work.

ising LQCD with staggered fermions to all orders
in a way that is consistent with 4 flavour QCD.

The factorisation issue for the staggered
fermion determinant is closely tied to a more gen-
eral universality issue: Is LQCD with a staggered
fermion in the same universality class as, say,
LQCD with 4 flavours of Wilson fermions? This is
certainly expected to be the case but should nev-
ertheless be tested wherever possible. One way to
try to get insight into this, while at the same time
investigating the factorisation issue, would be to
compare the staggered fermion determinant with
the fourth power of the Wilson fermion determi-
nant in the continuum limit. Ideally this should
be done analytically (so as to be able to iden-
tify and discard physically inconsequential factors
which may be present in the determinants and
which may either diverge or vanish for a → 0);
however this appears impossible with currently
known techniques. A simplified version of this
test of universality is possible though [1] and we
review it in the following. When supplemented
with some additional results presented here, it
allows us to analytically study the factorisation
issue for a “partially staggered” fermion determi-
nant in a setting where only a partial continuum
limit is required. From the results of [1] (and the
clarification of the “universality anomaly” which
we give here) we find that factorisation of the par-
tially staggered fermion determinant does indeed
occur in this limit.

2. A simplified framework for testing uni-

versality

On a finite volume Euclidean spacetime lat-
tice with temporal lattice spacing a and spacial
lattice spacing a′ we consider the fermion ac-
tion Sfermion = a(a′)3

∑
(x,τ) ψ̄(x, τ)D(r)ψ(x, τ)

where

D(r) = 1
aγ4∇4 + r

2a∆4 +Dspace +m (1)

Dspace = 1
a′%%∇space + r′

2a′ ∆space

with %%∇space =
∑

σ=1,2,3 γσ∇σ , ∆space =∑
σ=1,2,3 ∆σ , ∇µψ(x)= 1

2 [Uµ(x)ψ(x+bµ̂)−Uµ(x−
bµ̂)ψ(x−bµ̂)] , ∆µψ(x)=2ψ(x)−Uµ(x)ψ(x+bµ̂)−
Uµ(x−bµ̂)−1ψ(x−bµ̂) , x = (x, τ) and b = a or
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a′ as appropriate. For r = r′ 6= 0 this is the
Wilson fermion action, while for r = r′ = 0 it is
the naive action. In the case r = 0, r′ 6= 0 it is
a partially naive—partially Wilson action, with
fermion doubling on the Euclidean time axis due
to the absence of the temporal part of the Wil-
son term. Universality can therefore be tested
by comparing this lattice theory with the theory
for two flavours of Wilson (r 6= 0) fermions: ac-
cording to universality these should coincide in
the continuous Euclidean time limit a → 0. We
do not need to take the spacial continuum limit
since the spacial parts of the actions of the two
theories are the same. Thus we have a simplified
framework for testing universality which only re-
quires taking the continuum limit of one of the
spacetime coordinates (chosen here to be time).
The key advantage is that, as we will see, this is
accessible to direct analytic investigation.

To connect this universality test with the fac-
torisation issue we point out that the r=0 theory
has a partially staggered interpretation as follows.
Introduce the staggered ’flavour’ fields

ψ1(x, τ) = ψ(x, 2τ) , ψ2(x, τ) = ψ(x, 2τ + a)

living on the partially blocked lattice with tempo-
ral spacing 2a. In the free field case D(r=0) then
takes the form

D(0)
(
ψ1

ψ2

)
=

[
1
a γ4

(
0
∂+

4

∂−

4

0

)
+Dspace +m

](
ψ1

ψ2

)

where ∂+
4 (∂−4 ) denotes the forward (backward)

time difference operator. Now, making a basis
transformation in spinor⊗flavour space specified

by O =
(
γ5γ4
−γ5γ4

1
1

)
we obtain

D(r=0) → O−1D(r=0)O

= γ4⊗
(

1
0

0
1

)
1
2a ∂4 + γ5⊗

(
0
1

−1
0

)
1

2(2a) ∆4

+Dspace +m (2)

where ∂4 = 1
2 (∂+

4 + ∂−4 ). This clearly has the
structure of a ’partially staggered’ lattice Dirac
operator: the ’time part’ has the same form
as the usual free field staggered Dirac opera-
tor in the flavour field representation [18]. In
particular, ∆4 comes with a non-trivial flavour
matrix, and in the gauged theory this gives rise
to flavour-changing interactions. Thus we have a

simplified setting for investigating the question of
whether residual effects from flavour-changing in-
teractions spoil the factorisation of the staggered
fermion determinant in the continuum limit. In
the present setting, factorisation of the partially
staggered fermion determinant in the continuous
time limit corresponds to the following

Universality expectation:

lim
a→0

detD(r=0) =
(

lim
a→0

detD(r 6=0)
)2

(3)

(up to physically inconsequential factors
(p.i.f.’s)).
This is something which can be checked analyti-
cally [1] as we describe in the following sections.

3. Results

Set β :=length of the time axis (which we
hold fixed when taking the continuous time limit
a → 0); β = aNβ where Nβ is the number of
sites along the time axis; set N :=dimension of
the quantum-mechanical Hilbert space of spinor
fields {ψ(x)} living only on the spacial lattice,
and take U4(x, τ) to be the lattice transcript of
the 4-component A4(x, τ) of a smooth continuum
gauge field. In this setup the following was shown
in [1] (full details in [19]):
Result of direct calculation:

detD(1) a→0
−→

(
1
a

)NNβe
1
2

∫
β

0
TrM(τ)dτ

det(1−V(β))

(4)

detD(0) a→0
−→

(
1
2a

)NNβ det(1− V(β))2 (5)

with the ingredients defined below. The gauge
fields are assumed to satisfy periodic time bound-
ary condition, and for simplicity we have stated
the results (4)–(5) for the case where the fermion
fields are also time-periodic. (The treatment in
[1] covers the case of general time b.c. ψ(x, τ) =
e−αβψ(x, 0). For α = µ+ iπ/β this corresponds
to QCD at finite temperature 1/β and chemical
potential µ.) In (4),

M(τ) := r′

2a′ ∆space(τ) +m (6)

is a linear map on the QM Hilbert space
{ψ(x)}, with ∆space(τ)ψ(x) given simply by re-
placing ψ(x, τ) with ψ(x) in the definition of
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∆spaceψ(x, τ). The V(β) in (4)–(5) is also an
operator on the QM Hilbert space; it is the spe-
cialisation to τ = β of the operator V(τ) defined
∀τ ∈ R as follows. We regard ψ(x, τ) as a func-
tion Ψ(τ) taking values in the QM Hilbert space,
and introduce the continuous time—lattice space
Dirac operator

D = γ4(
∂
∂τ +A4(τ)) +Dspace(τ) +m (7)

After extending the gauge field from τ ∈ [0, β] to
all τ ∈ R, periodic under τ → τ+β, this operator
acts on QM Hilbert space-valued functions Ψ(τ)
defined for all τ ∈ R. Solutions to DΨ(τ) = 0
(τ ∈ R, no periodicity requirement on Ψ(τ)) are
then specified by an initial value Ψ(0), and V(τ) is
defined to be the evolution operator which deter-
mines the full solution from the initial value, i.e.
Ψ(τ) = V(τ)Ψ(0). This completes the descrip-
tion of the ingredients in (4)–(5). We outline the
derivations of (4)–(5) in the next section.

The results (4)–(5) allow us to check to what
extent the universality expectation (3) is satis-
fied. The appearance of det(1−V(β)) in (4) ver-
sus det(1−V(β))2 in (5) is clearly in accordance
with this expectation. The divergent factors in
(4)–(5) are also in accordance with it: given that
the divergent factor in (4) is (1/a)NNβ , and in
light of the partially staggered interpretation of
the r=0 theory, the divergent factor in (5) should

be ((1/ã)NÑβ )2 where ã = 2a and Ñβ = Nβ/2.
This is precisely the divergent factor (1/2a)NNβ

appearing in (5). However, (4)–(5) reveal a po-
tential breakdown of the universality expectation

due to the factor e

∫
β

0
TrM(τ) dτ

appearing in (4)
which has no counterpart in (5). Thus it is im-
portant to clarify the physical significance, or lack
thereof, of this “universality anomaly”. Recalling
(6) we see that, up to a p.i.f., the anomaly factor
is

exp{ 1
2

∫ β

0

Tr( r
′

2a′ ∆space(τ))dτ} (8)

This involves the spacial link variables and can-
not therefore be immediately dismissed as a p.i.f.
One might argue that it becomes a p.i.f. when
the spacial continuum limit a′ → 0 is taken since
1
a′ ∆space formally vanishes in this limit. This is

a delicate issue though, since Tr( 1
a′ ∆space) ac-

tually diverges in this limit (the largest eigen-
value of 1

a′ ∆space is ∼ 1
a′ ). In [1] the status of

this anomaly factor was left unresolved. We now
clarify the situation, showing that the anomaly
is in fact physically inconsequential. This is
done by showing that Tr∆space(τ), and hence the
anomaly itself, are independent of the gauge field,
i.e. do not depend on the spacial link variables
entering in ∆space(τ). To see this, recall that
∆space(τ) =

∑
σ=1,2,3 ∆σ(τ) with ∆σ(τ)ψ(x) =

2ψ(x)−Uσ(x, τ)ψ(x+a′σ̂)−Uσ(x−a
′σ̂)−1ψ(x−

a′σ̂). Evaluating Tr∆σ(τ) in a spacial plane wave
basis ψp(x) ∼ eipx we get (ignoring overall nor-
malisation factors)

Tr∆σ(τ) =
∑

p

〈ψp ,∆σψp〉 =

∑

p

∑

x

[ 2−Uσ(x, τ)e
ipσa

′

−Uσ(x−a
′σ̂)−1e−ipσa

′

]

After interchanging the sums over p and x the
terms involving the link variables are seen to van-
ish since

∑
pσ
eipσa

′

= δ(a′) = 0.
Thus we have established that the universality

expectation (3) does indeed hold up to physically
inconsequential factors, at least when r=1 in the
right-hand side of (3). This is at the same time
a demonstration of the factorisability of the par-
tially staggered fermion determinant in the par-
tial continuum limit a→ 0. For technical reasons
mentioned below we have only been able to eval-
uate the a→ 0 limit of detD(r) in the cases r=0,
Eq.(5), and r=1, Eq.(4), but not yet for general
r 6= 0.

4. Derivation of the results – an outline

The time-periodic lattice spinor fields ψ(x, τ)
on whichD(r) acts are identified with QM Hilbert
space-valued functions Ψ(τ) living on the tempo-
ral lattice sites, and these can in turn be rep-
resented by vectors Ψ̂ = (Ψ̂(0), . . . , Ψ̂(Nβ − 1))

where Ψ̂(k) := Ψ(ak). Then D(r) is represented
by

D̂(r)Ψ̂(k) =

d
(r)
−1(k)Ψ̂(k−1) + d

(r)
0 (k)Ψ̂(k) + d

(r)
1 (k)Ψ̂(k+1)
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where the d
(r)
j (k)’s are linear operators on the QM

Hilbert space given by d
(r)
1 (k)= 1

2a (γ4−r)Û4(k) ,

d
(r)
−1(k) = − 1

2a (γ4 + r)Û4(k − 1)−1 , d
(r)
0 (k) =

r
a + D̂space(k) +m with Û4(k) := U4(ak) and

D̂space(k) := Dspace(ak). (Here U4(ak)ψ(x) :=

U4(x, ak)ψ(x) etc.) After writing D̂(r) as an
Nβ×Nβ matrix, its determinant can be straight-
forwardly evaluated via the method of [20]. The
cases r=±1 and r 6= ±1 require separate treat-

ments due to the fact that d
(r)
±1(k) is invertible

when r 6= ±1 but not when r = ±1. For sim-
plicity we restrict to r ≥ 0 (the r ≤ 0 case is
analogous), then the results of the determinant
calculations are (with Nβ even in the r 6= 1 case)
[1,19]:

detD(r 6=1) =

( (1−r2)2

2a )NNβ det
((

1

0
0
1

)
− Û (r)(Nβ/2)

)
(9)

detD(1) = ( 1
a )NNβ χ(M) det(1 − V̂(Nβ)) (10)

where χ(M) :=
∏Nβ−1
k=0 det(1 + aM(ak))1/2 and

Û (r)(n) and V̂(k) are the lattice evolution opera-
tors in the r 6= 1 and r=1 cases, respectively:

D̂(r 6=1)Ψ̂(k) = 0 ⇔
( Ψ̂(2n)

Ψ̂(2n+1)

)
= Û (r)(n)

( Ψ̂(0)

Ψ̂(1)

)

D̂(1)Ψ̂(k) = 0 ⇔ Ψ̂(k) = V̂(k)Ψ̂(0)

(k ∈ Z, no periodicity requirement on Ψ̂(k)).
Note that in the r 6= 1 case two initial values are
needed to determine the solution, hence Û (r)(n)
is a 2×2 matrix whose entries are linear operators
on the QM Hilbert space, whereas in the r=1 case
it turns out that only one initial value is needed.

The next step is to show that the lattice time
evolution operators converge to appropriate con-
tinuous time evolution operators in the a → 0
limit. The idea is to write D̂(r) in the form

D̂(r) = L̂1(k)
1
a∂ + L̂0(k) (11)

or some suitable variant thereof. Here ∂ is the for-
ward or backward finite difference operator and
L̂j(k) (j = 1, 2) are linear operators on the QM
Hilbert space, parameterised by k ∈ Z, periodic
under k → k+Nβ , such that

L̂j(k) = Lj(ak) +O(a) (12)

for some operators Lj(τ) parameterised by con-
tinuous time variable τ ∈ R with periodicity un-
der τ → τ+β. Then the solutions to D̂(r)Ψ̂(k) = 0
approximate the solutions to DΨ(τ) = 0 where

D = L1(τ)
d
dτ + L0(τ) (13)

Consequently the lattice evolution operator Û(k)
for solutions to L̂Ψ̂=0 approximates the continu-
ous time evolution operator U(τ) for solutions to

DΨ=0. (Explicitly, U(τ) = Te
−

∫
τ

0
L1(t)

−1L0(t) dt

where T = t-ordering.) In particular one has
the convergence theorem: lima→0 Û(Nβ) = U(β).
This type of convergence result is well-known in
the mathematics literature [21]. It is the key to
deriving the results (4)–(5) from the determinant
formulae (9)–(10).

We have so far only been able to write D̂(r)

in the form (11) in the r = 0 and r = 1 cases.
The explicit expressions in these cases are given
below. The problem of evaluating lima→0 detD

(r)

for general values of r remains for future work;
new techniques beyond those described here may
be required for this.

r = 1 case: Decomposing Ψ̂ =
(

Ψ̂+

Ψ̂−

)
, γ4Ψ̂± =

±Ψ̂± , we have

D̂(1) = L̂1
1
a

(
∂−

0
0
∂+

)
+ L̂0

L̂1(k) = γ4

(
Û4(k−1)−1

0
0

Û4(k)

)

L̂0(k) = γ4

(
1
a
(1−Û4(k−1)−1)

0
0

1
a
(Û4(k)−1)

)

+D̂space(k) +m

The L̂j(k)’s are periodic under k → k +Nβ
and satisfy (12) with L1(τ) = γ4 and L0(τ) =
γ4A4(τ) +D(τ) +m, hence the continuous time–
lattice space operator (13) is precisely the opera-
tor D introduced earlier in (7). The convergence
theorem then gives lima→0 V̂(Nβ) = V(β). The
claimed result (4) now follows from (10) after not-

ing that lima→0 χ(M) = e
1
2

∫
β

0
TrM(τ) dτ

[1].
r=0 case: Introducing the staggering(

Ψ̂1(n)

Ψ̂2(n)

)
=

(
Ψ̂(2n)

Ψ̂(2n+1)

)
we have

D̂(r=0) = L̂1
1
2a

(
∂+

0
0
∂−

)
+ L̂0
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L̂1(n) = γ4

(
0

γ4Û4(2n+1)
γ4Û4(2n−1)−1

0

)

L̂0(n) =
(

D̂space(2n)+m

γ4
1
2a

(Û4(2n)−Û4(2n−1)−1)

γ4
1
2a

(Û4(2n+1)−Û4(2n)−1)

D̂space(2n)+m

)

The L̂j(n)’s in this case are periodic under n →

n+Nβ/2. Furthermore, L̂j(n) = Lj(2an) +O(a)
with the corresponding continuous time—lattice
space operator (13) given by [1]

D̃ =

(
Dspace(τ) +m

γ4(
d
dτ +A4(τ))

γ4(
d
dτ +A4(τ))

Dspace(τ) +m

)

This can be rewritten as D̃ = O−1
(
D
0

0
D

)
O with

D as in (7) and O as defined above Eq.(2). The
convergence theorem can now be applied to get

limã→0 Û
(r=0)(Ñβ) = O

(
V(β)

0
0

V(β)

)
O−1, where

ã = 2a and Ñβ = Nβ/2. This together with (9)
gives the claimed result (5).

Detailed rigorous proofs of the convergence the-
orem in the specific cases where it has been used
above are given in [19].

5. Free field case

In the free field case the evolution operator
V(β) has a simple expression: V(β) = e−βH

where H is the QM Hamiltonian, i.e. H =

γ4Dspace = γ4(%%∇space + M) , M = r′

2a′ ∆space +
m. The energy eigenvalues of H are ±E(p) =√

p2 +M(p) (2-fold degenerate), and it follows
that

det(1 − V(β)) =
∏

p

[
(1 − eβE)(1 − e−βE)

]2

=
∏

p

[
eβE (1 − e−βE)2

]2

Substituting this into (4)–(5) we obtain expres-
sions for the a → 0 limits of detD(1) and
detD(0) in terms of the E(p)’s. These expres-
sions can be re-derived starting from detD(r) =
{product of eigenvalues}, using Matsubara fre-
quency summation techniques [19]. This provides
a crosscheck on the correctness of the results.

6. Ambiguous continuous time limit of the

partially staggered fermion determinant

In obtaining the formula (9) for detD(r=0) the
number Nβ of lattice sites along the time axis
was assumed to be even, and it was under this
restriction that the a → 0 limit result (5) was
obtained. One might expect that the a→ 0 limit
of detD(0) with odd Nβ is the same. However,
this turns out not to be the case. For odd Nβ one
finds [19], instead of (9),

detD(r 6=1) =

( (1−r2)2

2a )NNβ det
[(

1
0

0
1

)
−

(
0
1

1
0

)
Û (r)(Nβ/2)

]

where the precise meaning of Û (r)(Nβ/2) in the
odd Nβ case is given in [19] and we simply men-

tion here that Û (0)(Nβ/2) has the same a → 0
limit as in the even Nβ case. It then follows by a
straightforward calculation [19] that in this case

detD(0) a→0
−→

(
1
2a

)NNβ det(1−V(β)) det(1+V(β))

Comparing with (5) we see that one of the fac-
tors det(1 − V(β)) in (5) is replaced here by
det(1 + V(β)). Thus the continuous time limit
of the partially staggered fermion determinant
detD(0) is ambiguous: different answers are ob-
tained depending on whether Nβ is restricted to
be even or odd.

This ambiguity has a natural explanation
though: it reflects the fact that even Nβ and odd
Nβ in the r= 0 lattice theory correspond to dif-
ferent time boundary conditions in the underly-
ing continuous time theory. This is seen from the
partially staggered ‘flavour field’ interpretation as
follows. For even Nβ the flavour fields are time-
periodic just like the original field, but for odd
Nβ we have

Ψ̂1(0) = Ψ̂(0) = Ψ̂(Nβ) = Ψ̂2((Nβ − 1)/2)

Ψ̂2(0) = Ψ̂(1) = Ψ̂(Nβ + 1) = Ψ̂1((Nβ + 1)/2)

I.e.
(

Ψ1(0)
Ψ2(0)

)
=

(
Ψ2(a(Nβ−1)/2)
Ψ1(a(Nβ+1)/2)

)
, which in the

a→ 0 limit becomes
(

Ψ1(β/2)
Ψ2(β/2)

)
=

(
0
1

1
0

)(
Ψ1(0)
Ψ2(0)

)
.

Thus the b.c.’s in the underlying continuous time
theory are “twisted” in this case.
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7. Conclusions

We have reviewed a test of universality where
a “partially naive” lattice fermion theory with
fermion doubling on the Euclidean time axis
is compared to the theory for two degenerate
flavours of Wilson fermions [1]. The continu-
ous Euclidean time limits of the fermion determi-
nants were evaluated and compared (with Wil-
son parameter r = 1 for the Wilson fermion).
From the expressions obtained, the partially naive
fermion determinant was seen to coincide with the
2 flavour Wilson fermion determinant (i.e. the
square of the single flavour Wilson fermion deter-
minant) up to physically inconsequential factors,
thus confirming the universality expectation. In
connection with this the “universality anomaly”
found in [1] was shown to be physically inconse-
quential.

Furthermore, the partially naive theory was
shown here to have a “partially staggered” in-
terpretation, thus our result can be interpreted
as demonstrating factorisation of a partially stag-
gered fermion determinant on the partial contin-
uum limit a → 0. This is a first piece of ana-
lytic evidence suggesting that factorisation of the
complete staggered fermion determinant occurs in
the full continuum limit (a problem with factori-
sation in the complete case could very well also
show up as a problem in the partially staggered
case). In light of the discussion in §1, our result
can also be interpreted as providing a hint that
renormalisation of perturbative LQCD with (at
least partially) staggered fermions to all orders,
consistent with 4 flavour QCD (or 2 flavour QCD
in our partially staggered case), is possible.3

I would like to thank the organizers of Lattice
2004 for a very enjoyable and stimulating confer-
ence, and for the opportunity to present this work
in the plenary session. I also thank the NCTS
at Taiwan National University for hospitality and
support during visits where some of this work was
done, and Pierre van Baal for feedback on the
manuscript.

3We remark that renormalisation of a variant of partially
staggered fermions in the context of a chiral sigma model
(an effective theory; no gauge fields present) has been car-
ried out in [22].
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